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Cross Architecture Building
● No Emulator necessary (mostly)
● Build Host + Build Target environment 

needed
● Cross Compiler toolchain needed



  

Current State in Factory & ALP
● aarch64 and riscv64 toolchain exists
● kiwi live image  creation works

(via kiwi-crossprepare-plugin)
● Some(!) packages are working, eg. the 

kernel
● cross-aaa_base provides helper tooling



  

Example Setup
using an ALP prototype



  

Project setup in devel:ALP
● NOTE: devel:ALP is a prototype only

 # osc meta prj devel:ALP

….

<scmsync>https://gitea.opensuse.org/adrianSuSE/Alp#factory</scmsync>

….

  <repository name="cross" rebuild="local" block="local">

    <path project="openSUSE:Factory:ARM" repository="standard"/>

    <path project="openSUSE:Factory:RISCV" repository="standard"/>

    <hostsystem project="openSUSE:Factory" repository="standard"/>

    <arch>aarch64</arch>

    <arch>riscv64</arch>

    <arch>x86_64</arch>

  </repository>



  

The git-way specials
● package centric organisation

One git repo per package for all official revisions

● Package sources come via submodules usually
Seperation of package source review and project aggregation
binary rpm *is* reporting git resource via VCS header
binary rpm *will be* reporting project source as well

● Build config (prjconf) is part of git as _config file
● Only project meta is not part of git atm

project meta in OBS
_pbuild in git for local builds using pbuild



  

pbuild 1/2
● part of build tool, install it via

● zypper in build
● git clone https://github.com/openSUSE/obs-build

● Works on
● OBS project checkouts
● Any other directory, eg. managed via git



  

pbuild 2/2
● It is a small OBS on your system
● The sources can be exchanged via OBS or any SCM
● Additional sources may get downloaded via the 

“Assets” mechanic
● Uses KVM when running as non-root



  

Cross Build using git & pbuild
● Build a single rpm cross arch out of the 

large ALP project fast…
● Only one package source downloaded

# git clone https://gitea.opensuse.org/adrianSuSE/Alp.git

# cd Alp 

# git submodule init

# git submodule update xz

# cd xz

# pbuild –preset riscv64



  

Cross Build using git & pbuild
● For the brave ones … building entire 

ALP also works...

# git clone https://gitea.opensuse.org/adrianSuSE/Alp.git

# cd Alp 

# git submodule init

# git submodule update

# pbuild –preset riscv64



  

Example Setup
Based on Leap and Factory



  

Cross Build using git & pbuild
● It works across build types, eg. mixing 

rpm and kiwi build

Note: kiwi runs on x86_64, but uses 
qemu for executing rpm scripts 

# git clone https://github.com/geckito/image-RaspBerryPi4-pi-hole

# cd image-RaspBerryPi4-pi-hole

# pbuild



  

Build using osc & pbuild
● How it almost already works ….

# osc co openSUSE:Factory:ARM zstd

# cd openSUSE:Factory:ARM

# osc create-pbuild-config standard aarch64

WARNING: lacks still cross definition!

# pbuild –preset cross_aarch64

create-pbuild-config



  

Adding cross build support 
to sources

On the example of spec files



  

Every package source is different...
cross-aaa_base-$arch provide generic helpers
● ENV: CC and CXX points to cross compiler
● rpm macros: 

%cross_sysroot   directory
%is_cross                set to 1
%_build                    %{_target_cpu}-suse-linux-gnu
(also affects %configure and %cmake)

● Provides check for correct binary arch in build result



  

Add build config hints
Give OBS and pbuild a hint where a package is 
needed. Otherwise they get installed in target env. 
only. Eg:

#!OnlyNative: make

#!AlsoNative:  Qt6

(also works via build config)



  

How to create an own setup
Building for a new device



  

Typical Requirements
1)Initialize new git repository

2)Create _pbuild

3)Pick to-be-rebuild or adapted source

4)Add own sources, eg. image description

5)Optional: add _config



  

Setup an own build - sources
# mkdir image-MyHardware

# cd image-MyHardware

# git init

# git submodule add https://gitea.opensuse.org/pool/kernel-source

# ln -sf kernel-source kernel-default

And steal a kiwi config as close as possible for your device

Also you most likely need to modify the kernel config

create-pbuild-config

git submodule add https://gitea.opensuse.org/pool/kernel-source

https://gitea.opensuse.org/pool/kernel-source


  

Setup an own build – build config
# cat > _pbuild <<EOF
<pbuild>
  <preset name="aarch64" default>
    <config>cross_aarch64</config>
    <config>tumbleweed</config>
    <hostrepo>https://download.opensuse.org/factory/repo/oss</hostrepo>
    <hostrepo>config:</hostrepo>
    <repo>https://download.opensuse.org/ports/aarch64/factory/repo/oss/</
repo>
    <arch>aarch64</arch>
  </preset>
</pbuild>
EOF

# pbuild

create-pbuild-config

git submodule add https://gitea.opensuse.org/pool/kernel-source



  

The pitfalls



  

pbuild hints
● Use latest version from openSUSE:Tools
● Results and logfiles are in _build.*/
● pbuild --single $package

for live log debugging

Documentation: http://opensuse.github.io/obs-build/pbuild.html

http://opensuse.github.io/obs-build/pbuild.html


  

Only aarch64 and riscv64 atm
● The other cross-*-gcc* do not support 

building against glibc atm!



  

Naming definitions
● No common understanding of host, 

build and target...
pbuild host target -/-

cmake HOST default -/-

GNU build host target

rpm* build target -/-

* Current state, older rpm versions have different definitions



Links

http://opensuse.github.io/obs-build/pbuild.html

http://opensuse.github.io/obs-build/pbuild.html
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