

Cross Building Factory & ALP
Using git, pbuild or OBS

openSUSE Conference

adrian@opensuse.org

Cross Architecture Building
● No Emulator necessary (mostly)
● Build Host + Build Target environment

needed
● Cross Compiler toolchain needed

Current State in Factory & ALP
● aarch64 and riscv64 toolchain exists
● kiwi live image creation works

(via kiwi-crossprepare-plugin)
● Some(!) packages are working, eg. the

kernel
● cross-aaa_base provides helper tooling

Example Setup
using an ALP prototype

Project setup in devel:ALP
● NOTE: devel:ALP is a prototype only

 # osc meta prj devel:ALP

….

<scmsync>https://gitea.opensuse.org/adrianSuSE/Alp#factory</scmsync>

….

 <repository name="cross" rebuild="local" block="local">

 <path project="openSUSE:Factory:ARM" repository="standard"/>

 <path project="openSUSE:Factory:RISCV" repository="standard"/>

 <hostsystem project="openSUSE:Factory" repository="standard"/>

 <arch>aarch64</arch>

 <arch>riscv64</arch>

 <arch>x86_64</arch>

 </repository>

The git-way specials
● package centric organisation

One git repo per package for all official revisions

● Package sources come via submodules usually
Seperation of package source review and project aggregation
binary rpm *is* reporting git resource via VCS header
binary rpm *will be* reporting project source as well

● Build config (prjconf) is part of git as _config file
● Only project meta is not part of git atm

project meta in OBS
_pbuild in git for local builds using pbuild

pbuild 1/2
● part of build tool, install it via

● zypper in build
● git clone https://github.com/openSUSE/obs-build

● Works on
● OBS project checkouts
● Any other directory, eg. managed via git

pbuild 2/2
● It is a small OBS on your system
● The sources can be exchanged via OBS or any SCM
● Additional sources may get downloaded via the

“Assets” mechanic
● Uses KVM when running as non-root

Cross Build using git & pbuild
● Build a single rpm cross arch out of the

large ALP project fast…
● Only one package source downloaded

git clone https://gitea.opensuse.org/adrianSuSE/Alp.git

cd Alp

git submodule init

git submodule update xz

cd xz

pbuild –preset riscv64

Cross Build using git & pbuild
● For the brave ones … building entire

ALP also works...

git clone https://gitea.opensuse.org/adrianSuSE/Alp.git

cd Alp

git submodule init

git submodule update

pbuild –preset riscv64

Example Setup
Based on Leap and Factory

Cross Build using git & pbuild
● It works across build types, eg. mixing

rpm and kiwi build

Note: kiwi runs on x86_64, but uses
qemu for executing rpm scripts

git clone https://github.com/geckito/image-RaspBerryPi4-pi-hole

cd image-RaspBerryPi4-pi-hole

pbuild

Build using osc & pbuild
● How it almost already works ….

osc co openSUSE:Factory:ARM zstd

cd openSUSE:Factory:ARM

osc create-pbuild-config standard aarch64

WARNING: lacks still cross definition!

pbuild –preset cross_aarch64

create-pbuild-config

Adding cross build support
to sources

On the example of spec files

Every package source is different...
cross-aaa_base-$arch provide generic helpers
● ENV: CC and CXX points to cross compiler
● rpm macros:

%cross_sysroot directory
%is_cross set to 1
%_build %{_target_cpu}-suse-linux-gnu
(also affects %configure and %cmake)

● Provides check for correct binary arch in build result

Add build config hints
Give OBS and pbuild a hint where a package is
needed. Otherwise they get installed in target env.
only. Eg:

#!OnlyNative: make

#!AlsoNative: Qt6

(also works via build config)

How to create an own setup
Building for a new device

Typical Requirements
1)Initialize new git repository

2)Create _pbuild

3)Pick to-be-rebuild or adapted source

4)Add own sources, eg. image description

5)Optional: add _config

Setup an own build - sources
mkdir image-MyHardware

cd image-MyHardware

git init

git submodule add https://gitea.opensuse.org/pool/kernel-source

ln -sf kernel-source kernel-default

And steal a kiwi config as close as possible for your device

Also you most likely need to modify the kernel config

create-pbuild-config

git submodule add https://gitea.opensuse.org/pool/kernel-source

https://gitea.opensuse.org/pool/kernel-source

Setup an own build – build config
cat > _pbuild <<EOF
<pbuild>
 <preset name="aarch64" default>
 <config>cross_aarch64</config>
 <config>tumbleweed</config>
 <hostrepo>https://download.opensuse.org/factory/repo/oss</hostrepo>
 <hostrepo>config:</hostrepo>
 <repo>https://download.opensuse.org/ports/aarch64/factory/repo/oss/</
repo>
 <arch>aarch64</arch>
 </preset>
</pbuild>
EOF

pbuild

create-pbuild-config

git submodule add https://gitea.opensuse.org/pool/kernel-source

The pitfalls

pbuild hints
● Use latest version from openSUSE:Tools
● Results and logfiles are in _build.*/
● pbuild --single $package

for live log debugging

Documentation: http://opensuse.github.io/obs-build/pbuild.html

http://opensuse.github.io/obs-build/pbuild.html

Only aarch64 and riscv64 atm
● The other cross-*-gcc* do not support

building against glibc atm!

Naming definitions
● No common understanding of host,

build and target...
pbuild host target -/-

cmake HOST default -/-

GNU build host target

rpm* build target -/-

* Current state, older rpm versions have different definitions

Links

http://opensuse.github.io/obs-build/pbuild.html

http://opensuse.github.io/obs-build/pbuild.html

	Title Slide
	Light Slide
	Slide 4
	Dark Slide
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

