
Building for different 
distributions with the 
openSUSE build service

Dr. Michael Schröder
Novell, Inc.



© 2006  Novell Inc.
2

Outline

Fine points of project management in the build service.
• building for multiple distributions
• building on top of multiple projects

Building packages: how to control the build environment.
• automatic package expansion
• dealing with ambiguities and excess packages
• automatic package name rewriting

Working around installation script differences.
• build service offers standard set of macros



© 2006  Novell Inc.
3

Distributions as Projects

Build service contains multiple complete distributions:
• SUSE Factory
• SUSE 10.0
• Mandriva 2006
• Fedora Core 4
• Debian Etch

These distributions can be used as “base” for other 
projects.

KDE4 SL10.0

based on



© 2006  Novell Inc.
4

Project Repositories

Binary packages are not stored directly with the project, 
but in a subpart, called “repository”.

Example: KDE4's repository “SL10.0” is based on SL10.0's 
repository “standard”.
Advantage of this scheme: a project can have multiple 
repositories.

KDE4

SL10.0

SL10.0

standard



© 2006  Novell Inc.
5

Building with multiple repositories

Packages will be built for both SL10.0 and Debian-etch.
Each repository can also support multiple architectures.

KDE4

Etch

SL10.0

SL10.0

standard

Debian-etch
standard



© 2006  Novell Inc.
6

Deb versus rpm packages

contents of spec file and debian build files are very 
different:

• rpm uses many macros
• deb uses many debian helper (dh_xxx) scripts
• different installation script semantics (order, arguments)

 Build service does not try to build a deb package from
a spec file or vice versa.
• uses dsc file if base distribution uses dpkg
• uses spec file if base distribution uses rpm



© 2006  Novell Inc.
7

Advanced repository linking

When building for the “Amarok4” project, packages will 
be first searched in the following order:

• the project's own repository
• the “SL10.0” repository of the KDE4 project
• the “standard” repository of the SL10.0 project

The system automatically adds the KDE4  SL10.0 link to 
the search path.

Amarok4
KDE4

KDE4
SL10.0

SL10.0
standard



© 2006  Novell Inc.
8

Advanced repository linking (cont.)

Search order is:
• own repository
• xine-lib2's “xine” repository
• KDE4's “SL10.0” repository
• SL10.0's “standard” repository (automatically added)

Amarok4
KDE4

KDE4
SL10.0

SL10.0
standard

xine-lib2
xine ...







© 2006  Novell Inc.
9

The Repository Search Path

Summary:

The Repository search path defines from which projects' 
repositories the packages are taken when setting up the 
build environment.

• order is important, first match wins
• the current repository is always added to the front of the 

path
• when the last repository entry of the path is reached, its 

search path is automatically added for further searching.



© 2006  Novell Inc.
10

Setting up the build environment

The build service parses BuildRequires / Build-Depends 
from spec file / dsc file.

• these packages get added to a “base system”
• packages get automatically added so that all of the run-

time dependencies are met

spec

BuilldRequires

Pkg A
Requires

Pkg D
Pkg B

Pkg C
Requires



© 2006  Novell Inc.
11

Problems caused by expansion

Expansion can pull in unneeded packages.
• Example: SL tetex requires xorg-x11-libs

Excess packages are bad:
• installation costs time
• your packages will only get built after the excess packages 

are finished
• your packages will get rebuilt if one of the excess 

packages is modified

 keep the number of involved packages as small as
possible!



© 2006  Novell Inc.
12

Breaking dependencies

To get rid of excess packages one can break the unwanted 
dependencies.
Dependencies can be broken on the project level (affects 
every package of the project) or on the package level:

• project level: by adding “Ignore:” lines to the project 
configuration
Ignore: tetex:xorg­x11­libs

• package level: by adding “#!BuildIgnore” lines to the 
specfile
#!BuildIgnore: xorg­x11­libs



© 2006  Novell Inc.
13

Dealing with ambiguities

Ambiguities can happen if two packages provide the same 
functionality.
The system treats ambiguities as errors:

Specfile:
BuildRequires: apache2

expansion errors:
have choice for apache2­MPM needed by
apache2: apache2­prefork apache2­worker



© 2006  Novell Inc.
14

Dealing with ambiguities

To solve ambiguities, either select one of the choices or 
deselect all unwanted ones:

• project level: “Prefer” lines
Prefer: apache2­prefork
Prefer: ­apache2­worker

• package level: “BuildRequires” / “#!BuildIgnores”
BuildRequires: apache2­prefork
#!BuildIgnore: apache2­worker



© 2006  Novell Inc.
15

Automatic dependency rewriting

Problem: packages get renamed or are named different 
for different distributions.

• Example: package containing shared libraries for canna

SUSE: canna-libs
Fedora: Canna-libs
Mandriva: libcanna1
Debian: libcanna1g

Project can specify per repository dependency rewrite 
rules:

Substitute: <package> <replacement packages>



© 2006  Novell Inc.
16

Project specific build data

A project consists of:
• a number of packages and repositories
• macros for the project
• information for setting up the build environment

The build process concatenates the configuration of every 
involved project.

• the repository search path defines which projects to use

Amarok4
KDE4

KDE4
SL10.0

SL10.0
standard

SUSE
macros

Amarok
macros

KDE
macros

Concat



© 2006  Novell Inc.
17

Standard installation tasks

Three kinds of installation tasks make up major part of 
scriptlets:

• adding a service to the system
• adding a new user and new group
• adding an “info format” manual

Current distributions handle those tasks very different:
• SUSE: macros and code
• Fedora: no macros, lots of verbatim code
• Mandriva: macros and helper programs

  provide standard set of macros.



© 2006  Novell Inc.
18

Adding a service

SUSE:
postinstall:

%{fillup_and_insserv -f <srv>}
preuninstall:

%stop_on_removal <srv>
postuninstall:

%restart_on_update <srv>
%insserv_cleanup

Mandriva:
postinstall:

%_post_service <srv>
preuninstall:

%_preun_service <srv>



© 2006  Novell Inc.
19

Adding a service (cont.)

Fedora:
postinstall:

/sbin/chkconfig --add <srv>
   preuninstall:

if [ “$1” = 0 ] ; then
service <srv> stop >/dev/null 2>&1
/sbin/chkconfig --del <srv>

fi
postuninstall:

if [ “$1” -ge 1 ] ; then
service <srv> condrestart >/dev/null 2>&1

fi



© 2006  Novell Inc.
20

Adding a service (cont.)

Proposed macros:

postinstall:
%service_add <srv>

preuninstall:
%service_del_preun <srv>

postuninstall:
%service_del_postun <srv>



© 2006  Novell Inc.
21

Adding a new user/group

SUSE:
/usr/sbin/groupadd -g <gid> -o -r <group>
/usr/sbin/useradd -r -o -g <group> -u <uid> ... <user>

Fedora:
/usr/sbin/groupadd -g <gid> <group>
/usr/sbin/useradd -c <com> -u <uid> -g <group>...

Mandrake:
%_pre_useradd <user> <dir> <shell>

%_postun_userdel <user>



© 2006  Novell Inc.
22

Adding a new user/group (cont.)

Proposed macro:

%user_group_add <name> <dir> <shell> <comment>

Only supports “Mandrake” semantics:
• add user and group in restricted area
• uid/gid is chosen by the useradd/groupadd program



© 2006  Novell Inc.
23

Adding an “info” file

SUSE:
postinstall:

%install_info --info-dir=%{_infodir} \
%{_infodir}/<file>.gz

postuninstall:
%install_info_delete --info-dir=%{_infodir} \

%{_infodir}/<file>.gz

Mandrake:
postinstall:

%_install_info <file>
preuninstall/postuninstall:

%_remove_install_info <file>



© 2006  Novell Inc.
24

Adding an “info” file (cont.)

Fedora:
postinstall:

/sbin/install-info %{_infodir}/<file>.gz %{_infodir}
preuninstall:

if [ “$1” = 0 ] ; then
/sbin/install-info –delete %{_infodir}/<file>.gz \

 %{_infodir}
fi



© 2006  Novell Inc.
25

Adding an “info” file (cont.)

Proposed macro:

postinstall:
%info_add <file> [infodir]

postuninstall:
%info_del <file> [infodir]

Mandriva compresses man-pages and info-pages with bzip2 
instead of gzip, breaks file lists.

• Two new macros: %ext_man %ext_info



© 2006  Novell Inc.
26

Conclusion

Multiple Repositories can be used to automatically build 
for different distributions.

• The built packages are stored in the different repositories
• Repository search path is used to merge the project 

configurations and thus the rpm macros.

The build service can build deb and rpm binary packages.
• spec files build rpms, dsc files build debs

Dependency expansion can lead to unwanted packages 
and ambiguities.

• both can be dealt with on project and package level

Standard installation tasks need standard macros.



© 2006  Novell Inc.
27

Conclusion

Now start to populate the build service with lots of 
packages building for lots of different distributions! 



General Disclaimer
This document is not to be construed as a promise by any participating company to 
develop, deliver, or market a product.  Novell, Inc., makes no representations or 
warranties with respect to the contents of this document, and specifically disclaims any 
express or implied warranties of merchantability or fitness for any particular purpose.  
Further, Novell, Inc., reserves the right to revise this document and to make changes to 
its content, at any time, without obligation to notify any person or entity of such 
revisions or changes. All Novell marks referenced in this presentation are trademarks or 
registered trademarks of Novell, Inc. in the United States and other countries.  All third-
party trademarks are the property of their respective owners.

No part of this work may be practiced, performed, copied, distributed, revised, modified, 
translated, abridged, condensed, expanded, collected, or adapted without the prior 
written consent of Novell, Inc.  Any use or exploitation of this work without authorization 
could subject the perpetrator to criminal and civil liability.


