

For

Ruby on Rails
Using

Cucumber, Capybara, Rspec, Selenium-WebDriver, Rcov, Launchy, etc...

James Mason, @bear454
Friday, June 18, 2010

SUSE Appliance Hack Week

Behavior Driven Development

/me grumbles.

Development Methodologies

Extreme, Agile, Waterfall, Iterative,
Formal, Rapid, Plan-Driven, Disciplined,

etc.

Development Methodologies

Extreme, Agile, Waterfall, Iterative,
Formal, Rapid, Plan-Driven, Disciplined,

etc.
~= “Cowboy Coding”

when compared to

Test Driven Development

Methodologies Compared

Methodology

Cowboy

TDD

Developer's
Role

QA's
Role

Write the code, test it.
Maybe.

Read the developer's mind.
Test everything.

Write a test,
Code to passing.

Expand the test suite to handle
edge/corner cases and security.

Hey a table!

:P

Methodologies Compared, cont'd

Methodology

Cowboy

TDD

BDD Same as TDD.

Developer's
Role

QA's
Role

Write the code, test it.
Maybe.

Read the developer's mind.
Test everything.

Write a test,
Code to passing.

Expand the test suite to handle
edge/corner cases and security.

Describe a feature,
Code to passing.

“Its one of those circle-of-life things”

Describe a Feature

Code to PassingRefactor the Code

Gherkin as a Second Language

Feature: First Things First
 In order to test the cucumber stack
 As a developer
 I want to do something simple.

 Scenario: Hello World
 Given I am on the home page
 Then I should see "Hello, World."

<= Name of the feature
<= Why?
<= Who?
<= What?

<= Like a test, many per Feature
<= Set the stage
<= Expectation

Also:
● “When”

interim activity before “Then”
● “Background”

before each scenario.
● “And” same as the prior step
● @tags – sorting and behavior

Given X, When Y, Then Z

Set the stage,
Perform some actions,
Test an expectation.

Lather, rinse, repeat.

Bad jokes are my job.
Step off.

:P

What Cucumber does with Gherkin

Feature: First Things First
 In order to test the cucumber stack
 As a developer
 I want to do something simple.

 @wip
 Scenario: Hello World
 Given I am on the home page
 And I am logged in as “Admin”
 When I follow “Click Me”
 Then I should see "Hello, World."

<= Displayed in long-form results

<= tested with 'rake cucumber:wip'
<= Resets the test environment
<= Rspec-based “step”
<= Rspec-based “step”
<= Rspec-based “step”
<= Rspec-based “step”

Setup

> sudo gem in cucumber cucumber-rails capybara rcov
> script/generate cucumber –capybara
 force config/database.yml
create config/cucumber.yml
create config/environments/cucumber.rb
create script/cucumber
create features/step_definitions
create features/step_definitions/web_steps.rb
create features/support
create features/support/paths.rb
create features/support/env.rb
exists lib/tasks
create lib/tasks/cucumber.rake

> sudo rake gems:install RAILS_ENV=cucumber

You're supposed to use RPMs
in home:ctso, you know.

:P

config/database.yml

test: &test

cucumber:
 <<: *test

config/cucumber.yml

<%
rerun = File.file?('rerun.txt') ? IO.read('rerun.txt') : ""
rerun_opts = rerun.to_s.strip.empty? ? "--format
#{ENV['CUCUMBER_FORMAT'] || 'progress'} features" : "--
format #{ENV['CUCUMBER_FORMAT'] || 'pretty'} #{rerun}"
std_opts = "--format #{ENV['CUCUMBER_FORMAT'] ||
'progress'} --strict --tags ~@wip"
%>
default: <%= std_opts %> features
wip: --tags @wip:3 --wip features
rerun: <%= rerun_opts %> --format rerun --out rerun.txt
--strict --tags ~@wip

Is that really erb in yaml ?!?
ZOMG HACK HACK HACK

:P

config/environments/cucumber.rb

Cucumber defines its own environment

...
config.gem 'cucumber-rails',
 :lib => false,
 :version => '>=0.3.2' unless
 File.directory?(File.join(Rails.root, 'vendor/plugins/cucumber-rails'))
config.gem 'database_cleaner',
 :lib => false,
 :version => '>=0.5.0' unless
 File.directory?(File.join(Rails.root, 'vendor/plugins/database_cleaner'))
config.gem 'capybara',
 :lib => false,
 :version => '>=0.3.5' unless
 File.directory?(File.join(Rails.root, 'vendor/plugins/capybara'))

...

features/

your-app/

 features/

 step_definitions/

 web_steps.rb

 support/

 env.rb

 paths.rb

<= Cucumber's root

<= rcov test methods

<= a good start

<= loaded by cucumber

<= cucumber's setup

<= web_steps helper

features/support/env.rb

Defines cucumber's behavior and 'world'
IMPORTANT: This file is generated by cucumber-rails -
edit at your own peril.
...
require 'cucumber/formatter/unicode'
Remove this line if you don't want Cucumber Unicode support
...
require 'cucumber/rails/capybara_javascript_emulation'
Lets you click links with onclick javascript handlers without using
@culerity or @javascript tags
...
Capybara.default_selector = :css
Remove this line if you prefer XPath
...
DatabaseCleaner.strategy = :truncation
see http://github.com/bmabey/database_cleaner
...

features/step_definitions/web_steps.rb

Prebuilt steps to get you started.
IMPORTANT: This file is generated by cucumber-rails -
edit at your own peril.
...
ex: Given I am on the home page
Given /^(?:|I)am on (.+)$/ do |page_name|
 visit path_to(page_name)
end
...

features/support/paths.rb

Helper for web_steps.rb
...
 def path_to(page_name)
 case page_name

 when /the home\s?page/
 '/'

 # Add more mappings here.
 # Here is an example that pulls values out of the Regexp:
 #
 # when /^(.*)'s profile page$/i
 # user_profile_path(User.find_by_login($1))
...

features/step_definitions/web_steps.rb

...
Use this to fill in an entire form with data from a table. Example:
#
When I fill in the following:
| Account Number | 5002 |
| Expiry date | 2009-11-01 |
| Note | Nice guy |
| Wants Email? | |
#
TODO: Add support for checkbox, select og option
based on naming conventions.
#
When /^(?:|I)fill in the following(?: within "([^"]*)")?:$/ do |selector, fields|
 with_scope(selector) do
 fields.rows_hash.each do |name, value|
 When %{I fill in "#{name}" with "#{value}"}
 end
 end
end

When /^(?:|I)fill in "([^"]*)" with "([^"]*)"(?: within "([^"]*)")?$/ do |field,
value, selector|
 with_scope(selector) do
 fill_in(field, :with => value)
 end
end
...

features/step_definitions/web_steps.rb

...
ex: Then I should see "Thank you for registering"
ex: Then I should see "Thank you for registering" within "#flash-notice"
Then /^(?:|I)should see "([^"]*)"(?: within "([^"]*)")?$/ do |text, selector|
 with_scope(selector) do
 if page.respond_to? :should
 page.should have_content(text)
 else
 assert page.has_content?(text)
 end
 end
end
…

I thought they had to use rspec?

:P

lib/tasks/cucumber.rake

> rake -T cucumber
rake cucumber # Alias for cucumber:ok
rake cucumber:all # Run all features
rake cucumber:ok # Run features that should pass
rake cucumber:rerun # Record failing features and run only them if any exist
rake cucumber:wip # Run features that are being worked on

Because we don't have
enough rake tasks. Sigh.

:P

“Hello, World.”

First describe a feature.

features/first_things_first.feature =>

Feature: First Things First
 In order to test the cucumber stack
 As a developer
 I want to do something simple.

 Scenario: Hello World
 Given I am on the home page
 Then I should see "Hello, World."

“Hello, World.”
> rake cucumber
/usr/bin/ruby -I "/usr/lib64/ruby/gems/1.8/gems/cucumber-0.8.1/lib:lib" -S rcov
--rails --exclude osx\/objc,gems\/ "/usr/lib64/ruby/gems/1.8/gems/cucumber-
0.8.1/bin/cucumber" -- --profile default
Using the default profile...
.F

(::) failed steps (::)

<false> is not true. (Test::Unit::AssertionFailedError)
/usr/lib64/ruby/1.8/test/unit/assertions.rb:48:in `assert_block'
/usr/lib64/ruby/1.8/test/unit/assertions.rb:500:in `_wrap_assertion'
/usr/lib64/ruby/1.8/test/unit/assertions.rb:46:in `assert_block'
/usr/lib64/ruby/1.8/test/unit/assertions.rb:63:in `assert'
/usr/lib64/ruby/1.8/test/unit/assertions.rb:495:in `_wrap_assertion'
/usr/lib64/ruby/1.8/test/unit/assertions.rb:61:in `assert'
./features/step_definitions/web_steps.rb:112
./features/step_definitions/web_steps.rb:14:in `with_scope'
./features/step_definitions/web_steps.rb:108:in `/^(?:|I)should see "([^"]*)"(?:
within "([^"]*)")?$/'
features/first_things_first.feature:8:in `Then I should see "Hello, World."'

Failing Scenarios:
cucumber features/first_things_first.feature:6 # Scenario: Hello World

1 scenario (1 failed)
2 steps (1 failed, 1 passed)
0m0.151s

“Hello, World.”

… and watch it fail.
Then code to the test.

public/index.html =>
+ <p>Hello, World.</p>

“Hello, World.”

> rake cucumber
/usr/bin/ruby -I "/usr/lib64/ruby/gems/1.8/gems/cucumber-0.8.1/lib:lib" -S rcov
--rails --exclude osx\/objc,gems\/ "/usr/lib64/ruby/gems/1.8/gems/cucumber-
0.8.1/bin/cucumber" -- --profile default
Using the default profile...
..

1 scenario (1 passed)
2 steps (2 passed)
0m0.183s

… and watch it pass!

“Hello, World”

So we know:

(1) Our complete rack stack is parsed by Ruby, and runs.
(2) We can make a request to the root path,

and get a document back with a 2xx:OK status code
(3xx:Redirects are automatically followed).

(3) The document returns contains the content we expected it to.

“I don't believe you. Show me.”

Cucumber-rails missed the 'launchy' gem, so we
have to add it.

config/environments/cucumber.rb =>
+ config.gem 'launchy', :lib => false

> rake gems:install RAILS_ENV=cucumber

features/first_things_first.feature =>
 Scenario: Hello World
 Given I am on the home page
 Then I should see "Hello, World."
+ And show me the page

Eyyy

:P

Test Coverage with Rcov

lib/tasks/cucumber.rake =>
@@ -18,4 +18,5 @@ begin
 t.binary = vendored_cucumber_bin
 t.fork = true
 t.profile = 'default'
+ t.rcov = true
 end

The first time you run 'rake cucumber:ok'
rcov will output to the new top-level folder
'coverage'
file:///path-to-rails-root/coverage/index.html

Umm... where's the hard part?

:P

file:///home/path-to-rails-root/coverage/index.html

Not bad for 'Hello, World'.

:P

Browser-based Tests

Step 1
features/first_things_first.feature =>
Feature: First Things First
 In order to test the cucumbe stack
 As a developer
 I want to do something simple.

+ @javascript
 Scenario: Hello World
 Given I am on the home page
 Then I should see "Hello, World."

Browser-based Tests

Step 2
> rake cucumber

There is no step 3.

Again with the jokes.

:P

http://cukes.info
http://wiki.github.com/aslakhellesoy/cucumber

http://github.com/jnicklas/capybara

http://code.google.com/p/selenium

http://www.pragprog.com/titles/achbd <= A book, sort of

http://railscasts.com/episodes/155-beginning-with-cucumber
http://railscasts.com/episodes/159-more-on-cucumber

Some Links

Links are good, right?

:P

http://cukes.info/
http://wiki.github.com/aslakhellesoy/cucumber
http://github.com/jnicklas/capybara
http://code.google.com/p/selenium
http://www.pragprog.com/titles/achbd
http://railscasts.com/episodes/155-beginning-with-cucumber
http://railscasts.com/episodes/159-more-on-cucumber

‹‹ fi‹‹ fin ››n ››

